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The performance of time-delayed feedback control is studied by linear stability analysis. Analytical approxi-
mations for the resulting eigenvalue spectrum are proposed. Our investigations demonstrate that eigenbranches
that develop from the stable Lyapunov exponents of the free system also have a strong influence on the control
properties, either by hybridization or by a crossing of branches which interchanges the role of the leading
eigenvalue. Our findings are confirmed by numerical analysis of two particular examples, the Toda and the
Rossler models. More important is the verification by actual electronic circuit experiments. Here, the observed
reduction of control domains can be attributed to these additional eigenvalue branches. The investigations lead
to a thorough analytical understanding of the stability properties in time-delayed feedback systems.

PACS numbd(s): 05.45.Gg

I. INTRODUCTION eral special aspects can be found in the literatafe[16]).
For theoretical analysis of the control performance one

Control of chaos has become an intense field of researchsually resorts to linear stability analysis or formally equiva-
within this decade, and therefore renewed interest in differlent approaches. Hence the control properties are governed
ent control methods has been stimulated. In that contex®y the eigenvalue spectrum of the linearized equations of
time-delayed feedback schemes have been rediscojgted motion. Here we are going to deal with the structure of the
since they are easy to apply in complex real world systemgvhole spectrum, try to clarify how different eigenvalue
Without performing complicated data analysis, the measuredranches interact with each other, and in particular demon-
ment of plain output signals is sufficient to generate onlineStrate how branches that emerge from the stable exponents of
an appropriate control force from a time-delayed differencethe free system may influence the control properties. To keep
The scheme applies to situations where one wants to stabiliZB€ presentation self-contained and in order to set up the
formerly unstable temporal periodic states. Classical applica&ssential notation, we will first recall the main ideas of such
tions concern demonstrative experiments like mechanical ogheoretical approaches. Section Il will be devoted to the
cillators [2] or electronic circuits[3], lasers[4], and dis- study of eigenvalue spectra in different model equations us-
charge gas systeni$]. Meanwhile, the method has been ing numerical simulations. It will become apparent that even
used in quite diverse experimental contexts. We mentiodoW lying eigenvalue branches may considerably influence
only spin wave dynamics beyond the Suhl instability, whichthe control performance. These aspects are illustrated in elec-
even to date lacks adequate theoretical modeling, but timdronic circuit experiments in Sec. IV. Several appendixes are
delayed feedback control has been applied succes$filly ~concerned with technical details, which in principle are not

Apart from this striking experimental success, an analyti-new, but the application to time-delayed feedback control is
cal understanding of the control method has been developegPmetimes difficult to find in the literature.
only recently. In that context it was pointed out that torsion,
i.e., the finite imaginary part in the Floquet exponent, is a Il. THEORETICAL ANALYSIS AND ANALYTICAL
necessary ingredient for the method to work a{aJ8]. Fur- RESULTS
thermore, schemes for the adaptation of the delay time,
which has to be adjusted to the period of the orbit, have beep
developed [9,10, and the limitations caused by the ro
Lyapunov exponent of the orbit have been analyzed in detal
[11]. Even the limiting influence of control loop latency,
which is well known in the context of ordinary control
theory, has been stressed for time-delayed feedback sche
[12]. Extensions of the simple scheme employing multiple
delays[13], symmetry properties of the orbit under consid-
eration [14], and time-dependent control amplitudgks]
have been discussed to overcome several of the limitations
the method just mentioned. Review articles dealing with sev- x(t) =f(x(t),KF(t)), (1

Time-delayed feedback schemes were invented for con-
| of experimental systems where only a limited number of
ﬁignals is accessible and no complicated data processing is
possible. Typical examples are optical and magnetic experi-
ments on ultrafast time scales or chemical and biological

stems which are sensitive to environmental changes. A
ypical setup which covers all these cases is displayed in
Fig. 1.

The equation of motion for the internal degrees of free-
(S’Pm which follows from the general setup reads

where the simplest recipe for the control force consists of a
*Electronic address: W.Just@gmw.ac.uk plain time-delayed difference of a single scalar signal,
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FIG. 1. Diagrammatic view of a time-delayed feedback control  FIG. 2. Floquet exponents computed from @) for \(V7
schemex(t) denotes the internal degrees of freedom of the nonlin-=1. Solid line: largest solution, dotted line: second real multiplier
ear systems(t) the measured signal, att) external parameters (AQ=0), gray: nondominant complex exponents.
or driving fields. The control loop is displayed in gray.

rMoj=a®+iw. (7)

F(t)=g[x(h)]—g[x(t—7)]. ) , , o
A simple but often quite useful approximation replaces
Such a scheme is suitable to control an unstable periodi(*)[ ] by an affine functioricf. Eq.(A2)]. The reader may
orbit §(t) =&(t+T) of the free systemK=0, provided the consult Appendix A, where several motivations for such a
delay time 7 is adjusted properly1]. In what follows we  step are summarized.
chooser=T, so that the force finally vanishes when control  |n what follows we will concentrate on special types of
is achieved. _ o free orbits, namely, those that flip their neighborhood during
The control performance is analyzed by considering thene turn. To be more definite we require that the Floguet
neighborhood of the periodic orbit and performing a linearmultipliers are real so that the imaginary part of the Floguet
stability analysis with the usual exponential ansatz, expgnent either vanishes or obey$§” = x/7. In the latter
t)— &(t)~ e ML), )= O(t+ 7). 3 caseé the linear approxlmqtlon Ju_st ment|or!ed simplifies fur-
X1~ &Y Q. QU=Q(t+7) ©® ther and Eq(6) reads in dimensionless units

Expanding the full equations of motidil) and (2) one ob- AT+HiIAQr= M7 (= TX%»))K(lJFe—ATfiAQT)_ 8)
tains an eigenvalue equation for the Floquet exponénts
+i€) and the eigenfunction(t), Here AQ=Q— /7 denotes the deviation of the frequency

due to control, and apart from the free Lyapunov exponent
A" 7 the only remaining system-dependent free parameter
(— 7xY)) captures all the details of the system. Of course,
Here the abbreviation on the right-hand stde, the latter coefficient may differ for the different Floquet
branches of the matrix5), but in each case it just rescales
M[«,t]:=D1f(£(1),00+ kdof(£(1), 0@ DGLEM)], (5 the control amplitude. The transcendental equai®man be

contains all the details of the internal dynamics and the CouEjISCUSSEd analyticallycf. Appendix B and the final result

oling of the control force. Although we started from afor the FIc_Jque_t exponents of the system subjected to control
differential-difference system we ended up with the usual® S(;]r?\elvgr?nggérianating from the exponent of the free orbit
quhqtur?;—rlllgesi%rgbdlzgﬁ'd-srhoenptrriegxnp(aogzzttci)ts?;? I‘T'P:Z?et: tgii ollides at a critical control amplitude with a second real
fancy procedures for a numerical evaluatiafi [1'7]) pro- ultiplier coming from _minus infinity, and gives rise to a
vided one has access to the explicit form of the equations O(fomplex con!ugfeltbed pa;llr. Fhor thg real part Ofl the Irz?rghest ex-
motion. But even without such information further simplifi- bonent a typica uttgr_y shaped curve resu ts, whic even-
cation .can be achieved. The mati®) itself has Floguet tually may lead to a finite control interval. There appears in
' d addition an infinite number of complex valued Floquet expo-

eé?}gng:tigéfzr:@rl’é mv\;eawl;ﬁrg;?]logsftlr?g?eﬂ vlnglr?tri]tigg_b nents, which have smaller real parts and which tend to minus
P 9 : q y infinity in the limit of vanishing control amplitude. No cross-

(V) . .
gimgﬁ]s’iovxheorfe ttuz Sgpsetresr(r:(nlgt r:r?gggrgg;vetiz 1 dei\#gr;?ﬁ ing of the Floquet branches occurs within our analytical ex-
branches. Then E@4) %lells us that we recover the exponents pression(8). An increase of the value of*)7 essentially
: j P fc,hifts the whole set of curves upward.

of the controlled system if the correct value for the argumen The scenario displayed in Fig. 2 is generated by each of

Is inserted, the Floguet exponents of the free system, which have been
A+iQ=TW[K(1—e ATiN7)], (6)  labeled by the superscript. The actual control domain is
determined by the intersection of all these control intervals
At the moment we do not know the function on the rightand a considerable reduction might result. Here we are par-
hand side explicitly apart from the fact that its valuexat
=0 reproduces the Floquet exponents of the free orbit,

(A+iQ)Q(t) +Q(t)=M[K(1—e~A+1D7) t]1Q(t).
(4)

2f wW=0 and\(">0 then, within the linear approximation,
there always appears an eigenvalue with positive real(paif8]).
D (dy) denote the vectofscalal derivatives with respect to the The same conclusion holds if the multiplier exp(*[«]) is a real
kth argument. function.
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ticularly interested in the question whether the branches T

originating from the initially stable exponents can influence 15 % 2 /"
the control performance. Such features cannot be success, '1 o / 0 \

AQr

fully dealt with on the level of the linear approximati¢8) 05
since apart from other limitations such equations do not con-
tain any coupling between different eigenspaces. Hence, we -
have to develop some improvement.

Expression(8) is an approximation for the full spectrum
of the system under consideration. If one is interested in an FIG. 3. Real part of the largest Floquet exponent and frequency
improvement several constraints have to be observed. Firgeviation for the period-4 orbit of the Toda modé®) in depen-
of all, it is quite well known that the sum of all Floquet dence on the control amplitudsolid lineg. The inset shows an

exponents is nothing else but the average of the trace of thlargement of the control interval. Dotted lines display results ac-
matrix (5). Then cording to the analytical expressio(ik3) and(6), but partly hidden

since the coincidence is almost within the resolution of the figure.

-n2

mod 2mi/ T
2 TU] = ;j TrD,f(&(1),0)dt endless variety of models for performing numerical analysis.
g 0 Here we concentrate on two simple but common systems,
1(r namely, the Toda and the Bsler equations. We employ a
+ K—f Dg[ &(t)]d,f(&(t),0)dt 9) particular coupling of the control force and will fix most of
TJo the parameter values. We do not intend to give a complete
overview of all control features of these models but focus on

implies that the sum of the exponents is strictly lineaiin particular aspects of the stability problem.

Hence
TOL]=N+i0+ (X Q) +ix{) k+AM[«], A. Toda equation
(10 The Toda oscillator represents a simple two-dimensional
2 AM[k]=0, nonautonomous model system exhibiting chaos in certain pa-
v rameter ranges. Its equations of motion read
is an exact expression, whetd")[ k] denotes the higher X1=Xo,
order nonlinear terms. It is already obvious from E4).that (12)

such correction terms are intimately related to the existence . .
of different Floguet branches, since 8) becomes an exact *2~ ~ #Xz~ a(€2= 1)+ Asin2at) =K[Xa(t) =xa(t=7)].
expression for one-dimensional systems. As long as the cons .
trol force is derived from a single scalar signal, at most om{'ere the control term has already been included where the

of the exponents increases linearly for large mod{ikj<(cf. S?(;Z? :‘/;/)?es dde;:;/:rgé{g:nvg}ﬁ ve_Iochy Cgozrg'”:rtlg- :t\{; W'(L'O‘;ﬁn'
Appendix A) so that p @6=0.8, =25, y

trol properties for a few periodic orbits with integer periods.
|| —o0 As our first example let us consider the period-4 orbit at
AVK] = —(@+ixM Kk (v#vmay  (11)  A=84. Floquet exponents are computed from the linearized
equation of motiorjcf. Eq.(4)] and the exponent with maxi-
holds. Finally, the corrections)[ k] may be complex func- mal real part is displayed in Fig. 3. One obtains the typical
tions. However, like eigenvalues of matrices Floquet multi-butterfly shaped curve for the real part already known from
pliers either are real or appear in complex conjugated pairghe simple analytical expressids). In addition, lower and
The first possibility corresponds to an imaginary part of O orupper critical control amplitudes are observed, so that at least
/7 in the corresponding exponent whereas the second casequalitative agreement with the results of the preceding sec-
implies frequencies that appear with opposite sign, e.gtion is visible(cf. Fig. 2.
w®=—w®@ =07/ If we specialize to free orbits with real ~ To check for quantitative coincidence we have calculated
multipliers, i.e.,o(’=0 or /7, then, because of structural the exponent§ 2] k] [cf. Eq.(A1)] and the result is shown
stability, the imaginary part does not change by small perturin Fig. 4 for real values of the argument. In order to get an
bation. Hence, a real first order coefficient resujt§)=0, idea of which« values are relevant for our spectrum, the
andA(M[ k] is a real function at least for small argument. In figure displays also the location of the Floguet exponents
summary, we stress that any improvement of @by non- A +i€ in the complexx plane according to the formula
linear termsA ([ «] has to obey the constraints just men- =K[1—exp(-A7—iQ7)].
tioned, but no simple extension containing only a few param- A linear increase of one branch for large modulus is ob-
eters is obvious at the moment. served in accordance with the asymptotic behavior devel-
oped in Appendix A. The saturation of the other branch does
not appear on the intermediate scale that is visible here. A
pronounced hybridizationlike structure is visible near the ori-
We begin to test some of our theoretical results of thegin. As a consequence a considerable curvature results and
preceding section using numerical analysis of model systhe linear approximatiorfA2) on which the analytical ex-
tems. Such an approach might also help to improve simpleression(8) was based is only correct to some limited extent.
analytical approximations like E@8). There is of course an For a better quantitative agreement one has to take this struc-

IIl. MODELS AND NUMERICAL SIMULATIONS
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FIG. 4. Left: Dependence of the exponents>?[ ] on real FIG. 5. Real part of two Floquet branches and frequency devia-

valued argument. Right: Location of the Floquet exponécftstig.  tion for the period-1 orbit of the Toda mod@l2) in dependence on

3) in the complexx plane(solid line). Dotted lines are results from the control amplitudesolid lines. Thick (thin) line displays the

the analytical expressiofl3), but the coincidence is almost within branch connecting to the largemalle) Lyapunov exponent of the

the resolution of the figure. free system. Dotted lines display results according to the analytical
expressiong13) and (6). The inset shows an enlargement near to

ture into account. In fact, one needs the full analytical struc-the control threshold.

ture of the expressioff [ ] in the complex plane, since
even small deviations might result in spurious solutions o
the eigenvalue equation. As an educated guess that has so
heuristic theoretical suppoftf. Appendix Q we suggest the
expression

curacy of the fit forT' (") k] is of the order of 5% and even
I'tﬂg Floquet exponents are reasonably well reprodycéd
ig. 5).

B. Rossler equation

T2 ]—im=a+ax=(c+ yr+ 02+ or+ B2Kk2), As an example for an autonomous model we investigate
(13)  the Rassler equation

X1= —Xp—Xg— eK[X; = X4 (t=7)],
where the term within the parentheses may be considered as

the nonlinear correctiomA (2] «]. A fit to the data in Fig. 4 Xp=X1+a%,— K[ Xp— Xy(t— 7)1, (14)
yields’ a= — 1.6 anda= — 2, which coincide of course with
the exact analytical values according to the sum (8leThe X3=D+X,Xg— CXg— eK[X3— Xa(t—7)],

remaining parameters are obtained as=1.401,y

=0.000,b=2.385,8=1.381, ando=3.046. Here, devia- \ijth parameter settinga=0.82,b=0.55, andc=2.2. For
tions of the fit from the numerically obtained values of the coupling of the control force we have introduced a modi-
7T W3 «] are smaller than 0.5% and are not visible within fieq scheme which includes an additional parameteFor

the resolution of Fig. 4. In addition, the Floquet exponents of; = conventional feedback control with a single scalar
the controlled system\ +i(}, are also well reproduce@f.  quantity is recovered. Far=1 we obtain a coupling via the
Fig. 3. We stress that in the present case the lower eigeﬂdentity matrix. In such a case the simple expressRrbe-
value_ influences the spectrum due to the hybridization justomes exadcf. Appendix A and by changing the parameter
mentioned. However, no crossing of Floquet branches for the geviations from the simple linear analytical approximation
maximal exponent occurs. can be investigated systematically. As previously, a few

The situation in the preceding paragraph seems to be lesganches of the Floquet spectrum for the period-1 orbit have
typical for the Toda model, since often a crossing of Floquepeen calculated numerically at different valueseofThey
branches is observed. In order to demonstrate this feature Wge shown in Fig. 6.
refer to the period-1 orbit aA=105. Floquet exponents in For e=1, as already mentioned, the whole spectrum is
dependence on the Co_ntrol amplitude are displayed _in Fig. Yescribed exactly by the simple analytical expres$8r(cf.

One clearly recognizes that the branch emanating frongig. 2). In order to understand which features changesfor
the second stable exponent comes into play. Both branches] one has to concentrate on the real multipliers, which
display the well known frequency splitting transition but fi- teng to minus infinity in the limit of vanishing control am-
nally the former lower branch dominates the spectrum. Thig)jiiyde. Fore<1 these branches connect to each other, giv-
kind of behavior has already been observed for extendeflq rise to a reversed third frequency splitting point that con-
time-delayed feedback contrfi8], but no explanation has nects the formerly independent branches. On lowesing
been given. Further, we note that in the case considered NQqher two of the frequency splitting points collide at
upper critical control amplitude is obtained since the real part_q g7 giving rise to a cusp singularity. As a consequence
stays negative and the orbit remains linearly stable, at 1eagfq req| and the complex branches become disconnected. The
for K vqlues up taK=20. A fit for the analytical expression remaining frequency splitting point in the upper part of the
(13) yields a=-0.4,a=-0.5,c=0.4468,y=0.0384b  gpectrum is now caused by real branches that connect to the
=1.343,8=—3.176, andr=0.000. Again, the first two pa- nontrivial Lyapunov exponents of the free system, in contrast
rameters coincide with their exact analytical values. The acgj the situation at = 1. Hence the branches originating from

the uncontrolled exponents are no longer independens for
<0.87 as Eq(8) would imply. Therefore, the hybridization
SFits to the data of W[ k]+T'@[«] andT D[ «]-T@[«x] have  not only leads to quantitative deviations from the linear
been performed witleNUPLOT 3.7. theory, but changes the structure of the spectrum completely,
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FIG. 6. Floguet exponents of the period-1 or-
bit of the Rasler systen{14) in dependence on
the control amplitude. Thick soliddotted line:
branch originating from the free Lyapunov expo-
nentAM7=0.808(®)r=—2.026), dashed line:
complex branch. The Goldstone mode connected
to A®7r=0 is not displayed.

so that the simple expressidB) no longer yields a good and difficult to describe quantitatively by analytical methods.
quantitative description. Nevertheless, the largest branctfurely such complicated spectra may also be detected in dif-
which actually determines the stability of the orbit, preservederent models. One can conclude that the type of spectrum
the typical butterfly shape. depends strongly on the specific properties of the system and
To gain some more insight we have again calculated nuthe coupling of the control. However, the main features are
merically the exponentE(123) x) for e=0. The results are Well captured qualitatively even by simple expressions like
displayed in Fig. 7. The structure looks quite intricate, and inEq. (8).
particular colllspns of eigenvalues in the vicinity ef=(_) IV. ELECTRONIC CIRCUIT EXPERIMENTS
are observed. Since now three branches are involved, in con-
trast to the nonautonomous Toda equation, one cannot expect So far our investigations have shown that the principal
that expressiolil3) yields an overall quantitatively satisfac- aspects of the Floquet spectrum are well understood. Even
tory description since the hybridization in E43) was based the simple theory captures basic features of the control per-
on two branches only. Although an extension to moreformance and deviations can be attributed to nonlinear con-
branches is straightforward, it might become meaninglesgibutions of the characteristic equati¢f). One can even
since the number of free parameters increases. Nevertheleggodel these terms successfully in special cases. Hence, it
the |inear increase df(s)[ K] and the Saturation d:r(l,Z)[ K] seems promISIng to continue our |nVeSt|gat|0nS with real ex-
are again in accordance with the general considerations ¢¥erimental systems. , ,
Appendix A. In almost all our experiments on chaos control by time-
The complexity of the studied case of théRter system delayed feedback we have observed the existence of several
indicates that the fine structure of the Floguet spectrum iri \0dUet exponents, at least for high control amplitude. In

. . . L . . ost cases the control regime was determined solely by the
higher dimensional systems is in general quite complicate ranch that connects to the unstable free Lyapunov exponent.

A second or even several exponents appear in the spectrum
of the control signal for highk values but often do not cross
the first one. In a few cases, such a crossing appeared in the
real parts, leading to a reduced control domain. Here we
report on these phenomena in experiments on a nonlinear
diode resonator. The circuitf. Fig. 8, consisting of a diode
(1N4005, an inductorL, and a resistoR, was sinusoidally
driven at fixed frequency, with amplitudeU , . The control
device allows application of a control force of the form
F(t)=K[U(t)—U(t—7)], where the delay was set accord-
ing to the driving frequency. Our feedback scheme consisted
of coupling the voltage at the resistor via the control device
to the driving force.

Re[tl'(x)]
Im{xT(x)¥2n

FIG. 7. Dependence of the exponenf&23) «] on real valued
argument for the period-1 orbit of the Baler system foe=0.
T®[k] (solid connects to the free exponent®r
=0.808,7TC)[k] (dotted to A®7r=-2.026, and T¥[«]
(dashedito the Goldstone mode with®? r=0. The inset shows the Our first set of parameters=760 uH, R=36 Q, f,
bifurcation structure close te=0. =800 kHz, andU,=1.1 V guaranteed a chaotic attractor

A. Quasilinear behavior of Floquet spectra
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FIG. 8. Experimental setup of the nonlinear diode resonator
with control device.

that emerged from a period-doubling cascade on variation of
the driving amplitude. Above all, this sequence of bifurca-
tions left behind an unstable period-1 orbit with frequency
o= /T in the Floquet exponent, which was generated in the
first period-doubling bifurcation. Applying time-delayed
feedback it is possible to stabilize this orbit for control am-
plitudesK between 12.9 and 81.7. We want to demonstrate
how the Floquet exponent with the largest real part, deter-

mining the stability of the orbit, changes on variation of the F!G- 10. Floguet branch with largest real part for the period-1
control amplitude. orbit of the nonlinear diode resonator in dependence on the control

There are several possibilities to determine Floquet eXpof_implitude. Solid lines display fits according to the analytical result

nents of a periodic orbit from experiment. One would be to® With A7=1.07 and (- 7xg) =0.036.

stabilize the orbit by time-delayed feedback and apply an

additional small harmonic force. By sweeping its frequencyments, especially since the number of “visible” exponents

and measuring the response of the system at every particularcreases with the applied control amplitude. Therefore, only

frequency point, one obtains the power spectrum of the linthe exponent with largest real part is plotted in Fig. 10. To

ear response function. Although its detailed form is in genconclude, this is one experimental example where several

eral quite complicated, the least stable eigenvalues are sigHoquet exponents appear in the spectrum of the control sig-

naled by Lorentzian lines(cf. Appendix D. The nal for highK values but do not cross the first one. Here, the

corresponding spectra that have been measured in the conteahbility of the controlled orbit is solely determined by the

interval are displayed in Fig. 9. exponent that connects to the unstable free Lyapunov expo-
From the position and width of the lines it is possible to nent.

determine the Floguet exponeits. Eqg. (D10)]. In particu-

lar, the dominant line gives the Floquet exponent with largest

real part(cf. Fig. 10. For comparison with the analytical B. Reduced control domains due to Floquet branch crossing

result(8) we optimized the fit with respect to the frequency

splitting point, obtaining. 7=1.07 and ¢ 7yg) =0.036. The As a second example we uséd=517 uH, R=124Q),

quantitative coincidence with this linear model is within a @nd fo=813 kHz. Although the method described above

few percent. At first glance one does not observe severa¥orks quite accurately within the cor_1tr0| |nter\_/al, it does n_qt

Floguet branches in the specttef. Fig. 9, but realizes allow _Floquet expongnts to be obtained outside the _stab|I|ty

strange non-Lorentzian peak forms for high control amlo|i_doma|n. T.h.erefore,_ in contrast to the formgr experiments,

tude. On a closer look, this can be attributed to the existencBere we utilized a different method for extracting the Floquet

of several lines within a small frequency bafd. Fig. 1).  €xponents of the system. We determined the real part by
Unfortunately it is not possible to extract these additional@nalyzing the exponential decredsecreasg from transients

Floquet branches for a widé¢ range from these measure-

AQT/2x

-40
-50
-60
-70
-80

P [dB]

560 600 640 680 720
f [kHz]

00 e iew of th k anal f
f [kHz] 800 FIG. 11. Extended view of the network analyzer spectrum for

K =60 (cf. Fig. 9. In addition to the experimental data, a fit with
FIG. 9. Network analyzer spectra of the control signal for thethree Lorentzian linegfor clarity moved downwardand their sum
stabilized but disturbed orbit. is depicted.
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FIG. 12. Control domain for the diode resonator in the plane of %‘ . corcrnne,
control amplitude and free Lyapunov exponent: circles, lower 02y fog, u ]
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cation. Solid line and light gray shaded region correspond to the
analytical result Eq(8) with (— 7yg) =0.088.

K

FIG. 13. Floquet branch with largest real part and frequency
of the control signal when switching the control ¢o a K deviation for the period-1 orbit of the nonlinear diode resonator in
value outside the control interyalThe imaginary part was dependence on the control amplitude: open symbols, branch con-
obtained from the frequency spectrum of this transient. SucRecting to the free unstable Lyapunov exponent; full symbols,
a procedure allows the Floquet exponents to be determinegf0ssing complex branch.
in the wholeK range, in particular, the Lyapunov exponent
of the free orbit\, for K=0. By changing the driving am- does not contain all properties of the spectrum. In particular,
plitude U, between 0.7 and 3.2 V unstable period-1 orbitsthe interaction of different eigenvalue branches, which origi-
with different positive free Lyapunov exponents could benate from different exponents of the free system, is not prop-
realized. Sweeping the control amplitulewe obtained the ~erly taken into account, so that at least quantitative devia-
lower and the upper border of the control interged. Fig.  tlons occur.

12). The influence of these additional branches, which are
We have compared this control domain with the analyticaistable in the free system, is twofold. On the one hand, hy-
prediction according to Eq8) (cf. [11]). Here the fit of the bridization between the different branches may occur so that
lower control threshold can be achieved with a single valudhe right hand side of the characteristic equati@ndeviates
of the scaling parameter(ryg), which indicates that the considerably from the linear form that has been employed in
dependence of this quantity on the system parameters in ti8e approximation(8). A more complicated expression has
parameter interval under consideration is very weak. For th@een adoptedicf. Eq. (13)], which yields good quantitative
upper control threshold a considerable reduction of the concoincidence with numerical simulations of the Toda equa-
trol domain is observed and control is no longer possible fotion. The price one has to pay is an increase of the number of
AT>1.1, in contrast to the predictions of the linear expres.free parameters that have to be fitted to numerical data. On
sion (8). Along the left border of the domain the frequency the other hand, eigenvalue branches may cross and the eigen-
attains a constant Valuﬁﬂ:o, whereas on the nght border value with |argeSt real part, which determines the Stablllty,
it varies continuously. Since at the tip of the region the fre-may change. Then, the branch that originates from the stable
quency develops a finite jump, we conclude that the cutoff ofxponent of the free system may enter the business, as ex-
the region is caused by a different F|0quet branch. empllfled by the numerical Study of the Toda equat|0n. In

We demonstrate this phenomenon by F|Oquet spectra okp.articular, such CrOSSingS have been identified in the elec-
tained at parameter valuek=470 uH, R=127 Q, f,  tronic circuit experiment. As a consequence a considerable

=813 kHz, andU,=1 V. As can be seen clearly from our reduction in the control domain and a reduction of accessible
experimental resultécf. Fig. 13, the control interval is not Periodic orbits results. _

determined only by the first Floquet exponent. A crossing in  The simple analytical expressid8) becomes exact for a
the real part occurs, leading to a new dominant Flogquefean field type coupling of the control force. With the in-
branch. As a consequence a considerable reduction of tr¢estigation of the Resler system we have studied systemati-

control interval takes place. cally deviations from such a situation. Finally, the different
eigenvalue branches become intermingled in a cusp point,
V. CONCLUSION and the whole structure of the spectrum changes qualitatively

if the case of the original Pyragas scheme is considered.

Linear stability analysis is a useful tool to study the per- So far we have seen that the linear stability properties of
formance of time-delayed feedback control. The correspondiime-delayed feedback control can be modeled even on ana-
ing characteristic equation can be written down formally andytical grounds to a certain extent. For a full understanding of
may be solved by numerical methods if the equations othe control performance, there are, however, several aspects
motion are known. But analytical evaluation calls for someleft, and we mention three of them which in our opinion are
approximation. The simplest version, i.e., E8), already the major challenge for future research. First, we have al-
captures essential qualitative features, e.g., the bifurcationgady seen on analytical as well as on numerical grounds that
that limit the control interval. However, such an expressionfor large control amplitudes the real part of the Floquet ex-
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ponents tends toward zero, i.e., exponents accumulate at tiere the constant term is just the Floquet exponent of the
stability threshold. Even if the real part stays negative so thafree system by virtue of Eq$5) and (Al).

the orbit is formally stable, small perturbations, e.g., noise The validity of Eq.(A2) is not obvious and calls for sev-
may render the orbit unstable and strongly influence the uperal comments. The simplest argument consists in a Taylor
per critical control threshold. In particular, in experimental series expansion. If we choose some arbitrary base pgint
systems such a weak stability of the orbit can be destroyednd neglect all contributions of second and higher order, we
by the presence of imperfections. Hence, it is of utmost im-obtain

portance to study the stability of the spectrum against pertur- dr® ar®
bations, a problem that plays a major role in the context of ([ ,]=T)[ ,]— Ko+ —— K+ O[(k— Kko)2].
strongly non-normal operators. dxo dxo

Second, there exists at least one variant of the control (A3)

algorithm which we believe deserves a closer look. Our iNrhe constant term yields at least an estimate for the free

vestigations indicate that the number of measured signalgquuet exponenict. Eq. (7)] and Eq.(A2) constitutes a
from which control forces are derived plays a major role inlocally correct asym.ptoti.c expression '

the structure of the eigenvalue problem and hence in the Nevertheless, one may consider under what conditions

control performance. If several quantities are employed t(?"ligher order terms can be neglected. We will show that Eq.

derive control force_s, not only do different cont.rol ampli- (A2) becomes exact for a particular type of coupling of the
tudes enter the business but there appears a wider range ntrol force. Suppose that we can replace the control ma-

possibilities to couple these forces to the system under CONyix. iie., the second term in the definitic5) by a multiple of

sideration. Hence, one may look for some optimized cou- - : L ;
: ’ ) . . the unity matrix,a1l. Such a situation happens if one couples
pling scheme, a problem that is well established in the con y " PP P

each component of the state vector to one of the equations of
text of co_nt_rol theory. How_ever, to the best of our knowledgemotion in a diagonal way with strengt (cf. [6]). Such a
?rgzyo?rsgz]clg?c:r)lstrStselg::? (a[il%t)for time-delayed feedback Con'coupling may be called mean field like. Then the eigenvalue

Third, the domain of attraction of the stabilized orbit problem(A1) simplifies to

plays a major role in applications. Surely such a property is [T k]— ax]P(t) + P (1) =D, f(&1), 0P (1),
beyond the linear stability analysis, and even in ordinary (A4)
differential equations the estimation of the domain of attrac-
tion is among the most difficult tasks. Thus, one might ex-taking the definition(5) into account. But Eq(A4) tells us
pect that the corresponding problem in time-delay systemthatl )[ x]— ax coincides with the Floquet exponent of the
will be even harder to tackle. However, the size of the doree system and expressi¢A?) is recovered withy) = o
main of attraction is expected to be of equal importance witrand )(,(”)=0.

the stability itself. Finally, we emphasize that in the general case a linear
dependence is obtained for large valueg «if also. Such a
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tingen, Germany. We are indebted to F. Laeri and Mlldtu  quantity[cf. Eq. (2)] then the dominant term in Eq5) is a
for the use of their delayed feedback control device. Part oflyadic product. As a consequence there appear two different
this work was supported by Deutsche Forschungsgemeirkinds of eigenbranchds(*)[ x]. One branch, labeled by, 4
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APPENDIX A: ASYMPTOTIC EXPANSION P(Vmax)(t):eKal(t)+O(K0)[d2f(§(t),0)_'_ O(K_l)].
OF THE CHARACTERISTIC EQUATION “
All other eigenfunctions are orthogonal bg and the cor-

In order to evaluate the characteristic equati®nexplic- . L
itly one needs an expression for the Floquet exponents of threespondlng Floguet exponent does not possess a contribution
in leading order,

matrix (5). The latter are defined by the eigenvalue problem
. I[k]=0(x°),
TP + Pt =Mk, t]P (D), ) (A6)
(A1) DL&DIP(H)=0(x")  (v# Vmay-

The computation of these expansions is standard, but here
we focus on the dominant bran¢A5) only. Inserting Eq.
(A5) into Eq. (A1), we obtain in orderO(«), taking the
Riefinition (5) into account,

[y1+as()]daf(£(1),0)=d,f(&(t),0{Dgl &) Jdf(£(1) ,&)}7-)

Pt =PO(t+ 1),

where P(K") denotes the corresponding right eigenfunctions
We have already stressed in the main text that a useful a
proximation is given by an affine expression,

TOL]=AD+io®+ (& +ix") k. (A2)



PRE 61 INFLUENCE OF STABLE FLOQUET EXPONENTS ON.. .. 5053

-1 1] -1 0

FIG. 14. Solution curves of EqB3) (solid lines in the complexz plane forc<cg, c=cg, and c>cg (from left to right. For
comparison the solution of E4B4) is also showr(gray lines.

Sincea,(t) is periodic, plain integration leads to side of Eq.(B2) is linearly increasing and the right hand side
1(r exponentially decaying. For<Qc<cg:=1/e, two solutions
y1=—J Dg[ &(t)]d,f(&(t),0)dt. (Ag)  are present, where the smaller one tends to minus infinity as
TJo ¢ approaches zero. Atg both solutions collide and no real

) ) ) ) solution exists any more for largewalues. Solving EqB2)
The asserted linear dependence is obtained from&%}.in  ¢or ¢ yields the properties just described incaRe(z) dia-
leading order if the coefficienfA8) does not vanish. It is gram (cf. Fig. 2.
remarkable that such a condition is violated if, e.g., the con-" £q; the discussion of complex solutions we confine our-
trol force couples only a single component of the state vectoLa es to the case>0 i.e.  rx?)K>0, for simplicity.
toa sing_le equation i_n a no_ndiagonal manner, _S"‘C_e the Scalé]’rhe other possibility t£< 0), does Rnot incll;de new features
product in Eq.(A8) will vanish. Our analysis might indicate since the real solution mentioned above already indicates

why such coupling schemes are_oﬁen not very effective. instability. In polar coordinates=r exp(¢), Eq. (B2) reads
In summary, our arguments indicate why such a rough

approximation as Eq(A2) may work well in a general con- r=ce " cos¢ (B3)
text. It is also clear that inclusion of higher order terms
should not violate the linear asymptotics for largeFurther- o=m—TrSing, (B4)

more, one should not confuse the largeasymptotics with

the limit of large control amplitudes, since the argument inheare for the angleo we allow any real value. Each equa-
the characteristic equatidB) contains the Floguet exponent o describes a set of curves in the complex plane and its

also. In fact, a closer inspection of the approximati®  jiersection points yield the desired eigenvalues.

reveals that the argumeki{ 1+ exp(—A7—iAQ7)] may satu- The curves determined by EB3) and their dependence
rate at a finite value for large control amplitudes, since thg, ¢ are summarized in Fig. 14. As for the analytical com-
second factor tends to zero. Hc_>weyer, and above all, we Wa’btutation of this diagram, we recall that E&3) is of the just

to stress that the linear approximatioh2) makes sense only - giscssed type that involves a linear and an exponential term,
for the Floquet exponents but not for the multipliers. Theprovided we are looking for in terms of . Depending on
latter involve an exponential dependencerorand approxi-  he sign of cos, either one or two solutions may exist. For
mations along the lines of a plain series expansion would b% e (— m/2,7/2)|mod 2, cose>0 holds and exactly one

completely useless. solutionr =r (¢) exists. That branch gives rise to the loop in

the region Ref) >0. For¢ e (7/2,3m/2)|mod 27 two cases
APPENDIX B: SOLUTION OF THE TRANSCENDENTAL have to be distinguished. If©c<cg holds, one always ob-

CHARACTERISTIC EQUATION tains two solutions, which depend monotonically on @os
The analytical investigation of E48) is to some extent 1hiS case completes the leftmost diagram in Fig. 14.cAt
standard and essential parts can be found in textbédks = Cs @ critical case happens, since the two solutions of Eq.

[19]). Nevertheless, we present here an explicit and elemer{B3) just touch atr=1, ¢=m. As a consequence the two
tary discussion for completeness. First of all, the followingdisconnected parts of the curve join. Ror cs, Eq.(B3) has

abbreviations for the eigenvalues and the control amplitud&vo real solutions only if cog is not too small, i.e., cos

are introduced: >c0S¢pp(<0). The actual value of the critical angle, does
not matter, but it is easily computed from the condition that
z=AT+HIAQT—NT+(— XK, the two solutions collide. The monotonic dependence of the
) (B1)  solutions on cog together with the fact that one of the real
ci=(—7x{)Ke A nRIK, solutions tends to infinity in the limit cas10 yields the

o rightmost diagram in Fig. 14. A parametric representation of
Then Eq.(8) simplifies to all these curves may be obtained by solving E&g3) for
7=—ce Z (B2) cose. In particular, the asymptotic representation hjré
*cexgd—Re(z)] follows in the limit Ref) — —o, so that
While z may in general be a complex valued quantity, the curves increase exponentially to the left.
denotes a real number. Its sign corresponds to the sign of the The curves determined by E(B4) do not depend on the
control amplitude. value ofc and are depicted in Fig. 15. As for the analytical
The real valued solutions of EB2) are computed fairly computation we first note the trivial solutiop=, r=0.
easily. One just has to intersect an exponential with a straighHturthermore, it would be sufficient to consider the upper half
line. Forc<0 a single solution exists, since the left handplane ¢ € (0,7)|mod 27 since Eq.(B4) is invariant with
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ae | U () =M[k,t]U(1), U 0)=1. (C1)

-

2n I The exponents are just the logarithms of the eigenvalues of
0

U, (7). Floguet theory tells us that the evolution matrix splits
o / into a periodic and an exponentially time-dependent factor.
- For =0 this splitting reads

-10
FIG. 15. Solution curves of E¢B4) (solid lineg in the complex Uo(t)=Qo(t)exp(Cot),  Qo(t)=Qo(t+7),  (C2)
z plane. For comparison the solution of E&3) for c=cg is also

shown (gray lines. The actual value ot does not influence the

large scale properties of the latter curve. whereC, determines the free Floquet exponents. The split-

ting (C2) is, of course, not unique and different rules for the
imaginary part result in different periodic factd@g(t). We

respect to the substitution— ¢— ¢ —, and the curves are " erindic factor to simplify EGCY). Introducing
symmetric with respect to the horizontal axis. Since accord-

ing to Eq.(B4)

—Nn-1
T—¢ Vi()=Qq (1)U, (1), (C3
= (B5)
sing
holds andr is non-negative, only a restricted set of angles isWe obtain
possible, namely,e l,,, where 1,=[0,27], |,=1=[(2n
pUmens 2)n ) and ne - lznm(2n L. Bdua V(1) =[Co+ ka(t)@ BTV (1), (C4)

tion (B4) just tells us that in each intervd), the imaginary
partr sing changes monotonically. Faor# 0 this yields the
branches in Fig. 15 that do not touch the horizontal axis. For
n=0 Eq.(B4) implies the limitsr=1 ate=, andr = at  here the vectors in the control matrix are given by
¢=0, so that the forklike structure depicted in Fig. 15 fol-
lows.

The intersection of the two graphs yields the desired ei-
genvalues(cf. Figs. 14 and 16 The shape of the curve in a(t)® B(t)=Qy (1) d,f(£(1),00© D[ &1)IQo(1).
Fig. 14 and the inequalitgs<< 7 guarantee that the solution (CH)
with largest real part is either one of the real solutions or the
complex solution that occurs on the collision of the two re- ) )
als. A crossing of eigenvalue branches does not occur. ThE!Cduet exponents can be obtained from the mati3) be-
analysis of other cases, e.g= 0 or even complex free Flo- CaUS€ of initial gnd per|0(_j|C|ty conditions. In order to sqlve
quet multiplierso(” 0,7, follows the same lines. In par- Eq. (C4) analytically we mtrqduce a crude approximation
ticular, parts of the analysis do not change siceaters only ~&nd neglect completely the time dependence of the vectors
Eq. (B3) and a finite imaginary part would influence only (C9- We have to mention that this approximation is not
Fig. 15. invariant with respect to the convention for the_ imaginary

We admit that additional and sometimes tedious analytipart of the FI(_)quet exponen;s since different periodic factors
cal estimates are necessary to prove rigorously all topolongO(t) imply d|fferen_t constraints for the control vectors. Fur-
cal features of Figs. 14 and 15. But the steps that the mattj’€rmore, the matriQ,(t) may be complex valued, a case
ematically intended reader might feel to be missing can b&hat appears in pa(rt)|cular if all multipliers of the free system
supplemented. They have been skipped here for clarity an@'® Negative, i.eq'” = /7. However, in the case on which
brevity. In addition, one should keep in mind that the resultgV€ concentrate in what follows, the factor expit/7) may

just mentioned can be obtained by more abstract approach8§ absorbed in the definition Gfo(t), which then becomes a
also (cf. [20]). real but antiperiodic quantity. Fortunately, E@C5) stays

periodic in time and the assumption of constant vectors re-
mains consistent.

Hence, we are left with the diagonalization of the matrix
Co+ ka® B, where the first term has eigenvalue®). If we

The Floquet exponen®*)[ ] [cf. Eq. (A1)] are usually ~ restrict ourselves to the two-dimensional case the desired
computed with the help of the evolution matrix Floquet exponents read

APPENDIX C: HYBRIDIZATION OF FLOQUET
BRANCHES

T2 ] =i =D+ N+ k( Bla)) = VEAD=AC)2+ LMD -\ D) (a1 81— ayBy) i+ H(Ble)*a®.  (CO)
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Exp.ression(C6) has, of course, the qorreqt asymptof[ic be- F(V)[K]pscv)*(t)_F')E(V)*(t):ps(v)*(t)M[K’t],
havior for large values ofx| as described in Appendix A. (D4)
For our purpose we need the branches in an intermediate pfj)(t):pff)(tJr 7).
range and expressiqi€6) is not fully sufficient. In order to ) ]
keep all coefficients independent of each other we generalizEnen the stationary solution of E¢D3) reads
to Eq. (13), which is the most general expression having
Iint_aar asymptotic behavior an_d _invc_>|ving square root singu- i [ PO a1t t)
larities only. It takes the hybridization of the two branches rw(t)e™ = _WEV e W
into account appropriately.
(v) (Y ’
APPENDIX D: LINEAR RESPONSE FOR DELAY « Pl D{P, (1) d3F (£(7).0,0)) b. et gt/
SYSTEMS <p£:/?/|PE”]:/?/> w
Consider a system subjected to time-delayed feedback
control and an additional small time-dependent external pa- _ = o
rameterb(t), =eWtp,, > f e uwl —iw)t
v 0
(1) =F(x(1),KF(1),b(1)). (D1) XPL”V)V(t)<pL”V)V(t—t’)IdaF(§(t—t’),0,0)>dt,

)| p(»)
(PP

In the vicinity of the periodic orbit(t) the dynamics up to
first order is given by (DY)

where(.|.) denotes the usual scalar product and the denomi-
nator is time independent, as a standard argument combining

Sx(1) =D f(&(),005x(t) + dof(£(1),0{Dg[ £1)] the definitions(A1) and (D4) shows. Additionally, the rates
I'[ u,,] have negative real part, which follows implicitly
XK[ox(t) = ox(t—7) ]} +d3F(&(1),0,0b(1), from the general theory of differential-difference equations

(D2) (cf. [20]). Apart from the exponential, the integrand is peri-
odic int’ and by splitting the integration range into intervals

. . _ of length = we finally obtain
where in accordance with Sec. Il the notatiéiix,F,0) gthrwe finaly I

=f(x,F) was used. Provided the periodic orbit subjected to , , 1
control is stable, EqD2) governs the whole dynamics inits ~ Tw(t)e"™'=e""b, > PR O p
vicinity for small driving fields. Because of linearity the so- v 1-e "
lution of Eq.(D2) may be obtained for each Fourier mode of

the field b(t) separately,b,, expiwt). The corresponding Xf
mode of the responséx(t) after discarding a transient is

T (v) : ’
e(F [ ] —iw)t
0

gég/.e(rlljg)yiiwo(é)e?;pdwt) with r,(t)=r,(t+ 7). By virtue of xPfﬁ)v(t)@%(t_t')|d3F(§(t—t')'0'0)> N
(PilPL) |
d ) . .
a[rw(t)e'Wt] =M[ py tIr ()€™ + d3F (£(1),0,00b,e™", (D6)

The response contains the driving frequeneyand integer
multiples of the frequency of the orbit72 . The spectrum
of the control signab[x(t)]—g[x(t—7)] is now easily ob-
tained in linear order. Its amplitude at the driving frequency
where the abbreviatio5) has been used. The solution of can be read off from EqD6) and we end up with

this linear inhomogeneous equation in the stationary state

=K (1—e MW7), (D3)

may be obtained by employing the evolution mat@). By s (1—e‘““’T)S(”)(w)‘2 )
the usual spectral decomposition the latter can be expressed H(w) = 1— T pul—iwr [bul*, (D7)
in terms of right and left eigenfunctions which are defined by
Eqg. (Al) and where
(e D[ &1)]|PU (1) )(pl(t—t")|d3F(&t—1"),0,0
N f J Ot {PHEVTIPLONPL AP A1) 00) .
TJoJo

(pLIPL)
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denotes the constant Fourier mode contribution from the pes valid, we obtain from Eq(D8) in leading order contribu-
riodic orbit. Thus the shape of the spectrum is in generations with Lorentzian line shape, provided the frequemcy
quite complicated. However, the numerators are regulagomes close to the imaginary pattof the Floquet exponent
functions of the frequency so that poles, i.e., pronounced lin@nd the real partA| is small,

structures in the spectrum, are caused by the zeros of the (1—e 127 S0 (Q)|?

denominator. If we recall that due to the characteristic equa- (W)= ] (D10)
tion (6) the expansion B2 [(Ww—Q)%+A2?]
TU[K(1-e 9]~z Improved expressions for the spectra may be derived by em-

ploying, e.g., the linear approximatidA2) in Eq. (D7). But
then, for consistency, the frequency dependence of the nu-
(D9) merator also has to be taken into account.

=B(z—AT—iQ7)+O0[(z—AT-i1Q7)?]
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